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a b s t r a c t 

Ocean mesoscale eddies strongly affect the strength and variability of large-scale ocean jets such as the 

Gulf Stream and Kuroshio Extension. Their spatial scales are too small to be fully resolved in many current 

climate models and hence their effects on the large-scale circulation need to be parametrized. Here we 

propose a parametrization of mesoscale eddy momentum fluxes based on large-scale flow deformation. 

The parametrization is argued to be suitable for use in eddy-permitting ocean general circulation mod- 

els, and is motivated by an analogy between turbulence in Newtonian fluids (such as water) and laminar 

flow in non-Newtonian fluids. A primitive-equations model in an idealised double-gyre configuration at 

eddy-resolving horizontal resolution is used to diagnose the relationship between the proposed closure 

and the eddy fluxes resolved by the model. Favourable correlations suggest the closure could provide an 

appropriate deterministic parametrization of mesoscale eddies. The relationship between the closure and 

different representations of the Reynolds stress tensor is also described. The parametrized forcing pos- 

sesses the key quasi-geostrophic turbulence properties of energy conservation and enstrophy dissipation, 

and allows for upgradient fluxes leading to the sharpening of vorticity gradients. The implementation of 

the closure for eddy-permitting ocean models requires only velocity derivatives and a single parameter 

that scales with model resolution. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Ocean mesoscale eddies are found throughout the world ocean,

nd are observed to be especially vigorous in regions of strong

estern boundary jets such as the Gulf Stream and Kuroshio Ex-

ension, as well as throughout the Antarctic circumpolar current.

he strength and variability of these ocean jets is strongly en-

anced by upgradient momentum fluxes due to mesoscale eddies

 Starr, 1968 ). In order for ocean general circulation models (GCMs)

o accurately simulate the mean state and variability of these jets,

he effects of mesoscale eddies on the large-scale flow must be

epresented. Unfortunately, mesoscale eddies have spatial scales in

he range 10–100 km, which is too fine to be resolved by the ocean

CMs currently used in coupled climate models and so their ef-

ects must be parametrized. 

There are broadly two classes of mesoscale eddy parametriza-

ion. In GCMs with very coarse horizontal resolution, ≈100 km

r coarser, mesoscale eddies are not resolved at all and their
∗ Corresponding author. 
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ffects are parametrized using a scheme that mimics their cu-

ulative effect on the resolved scales of motion, as done by

he Gent–McWilliams scheme that represents the flattening of

sopycnal surfaces resulting from baroclinic instability ( Gent and

cWilliams, 1990 ). In GCMs with slightly finer horizontal reso-

ution (e.g. 50 km), often referred to as eddy-permitting models,

esoscale eddies are partially resolved, but can behave unrealisti-

ally because the eddy scale is close to the model grid scale. In this

ase, the goal of an eddy parametrization is to improve the repre-

entation of the eddy variability that is already partially present in

he model, and potentially to improve the mean state. Since many

f the next generation of coupled climate models will make use

f eddy-permitting ocean GCMs, and eddy-resolving GCMs will re-

ain too computationally expensive to be widely used in the near

uture, it is important to develop mesoscale eddy parametrizations

hat are suitable for models with eddy-permitting spatial resolu-

ions. 

Turbulent mesoscale eddies act to transfer energy from small

o large spatial scales as occurs in 2D turbulence, resulting in self-

rganised upgradient momentum fluxes driving large-scale ocean

ets ( Charney, 1971 ). For a numerical model to resolve this be-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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haviour, the important upscale and downscale transfers result-

ing from the nonlinear (i.e. advective) terms in the equations of

motion must be adequately represented. Eddy-permitting models

are by definition truncated somewhere in the middle of the range

of scales over which such transfers occur, which implies that the

effects of parameterized eddy viscosity may be felt strongly within

this range because the eddy scales are close to the model grid-

scale. While it may be necessary for numerical stability to assume

that eddies behave diffusively at the smallest resolved scales, eddy

viscosity is equivalent to downgradient flux and therefore cannot

represent the mean-flow forcing effects of upgradient eddy fluxes. 

A more physically consistent parametrization of eddies should

account for both upgradient and downgradient momentum fluxes.

It should respect the quasi-geostrophic turbulence properties that

there are net upscale transfers of energy and net downscale trans-

fers of enstrophy, with eddy-mean interaction leading to the main-

tenance of large-scale jets. The parametrization should also depend

on the variability present in the model, as it is intended for use in

eddy-permitting models, and ideally this dependence should have

as few as possible adjustable parameters. Our aim here is to design

a parametrization that incorporates these properties. 

Approaches to eddy parametrization are varied and are often

explored in the context of idealised models (e.g. Frederiksen and

Davies, 1997; Eden and Greatbatch, 2008; Grooms et al., 2013;

Berloff, 2015a; 2015b ). Berloff (2005) showed that upgradient eddy

fluxes in a quasi-geostrophic model could be modelled statisti-

cally by fitting autoregressive processes to the eddy statistics ob-

tained from an eddy resolving run, yielding an improved jet in

a low-resolution model. Jansen and Held (2014) and Jansen et al.

(2015) corrected spurious dissipation of kinetic energy by diag-

nosing the energy lost to gridscale viscosity and re-injecting this

energy at larger spatial scales, so as to preserve energy conserva-

tion by mimicking the upscale cascade of energy that is expected

in 2D turbulence. Porta Mana and Zanna (2014) designed an eddy

parametrization by determining a function of the coarse-grained

flow in a high-resolution quasi-geostrophic model that correlated

well with the eddy forcing to serve as the basis for a stochastic

parametrization that depends on the resolved scales. Such varied

approaches all attempt to represent the rectified effects of upgra-

dient momentum fluxes and energy backscatter (i.e. upscale energy

transfer). 

The approach of Porta Mana and Zanna (2014) was based on

assuming that a more general stress-deformation relation than the

standard eddy viscosity may apply to the flow of turbulent flu-

ids. Rivlin and Ericksen (1955) showed how a fluid stress tensor

can depend generally on the gradients of velocity as well as ac-

celeration and so-called higher-order accelerations. The total stress

tensor can be expressed as a summed series of tensors that de-

pend on the strain tensor, with the strain tensor itself being the

first term in the series. Hence truncation of the series retaining

only its first term yields a diffusive forcing in the momentum and

vorticity equations, and this type of fluid is termed a Newtonian

fluid ( Slemrod, 1999 ). Fluids for which further terms in the se-

ries contribute to the stress are termed non-Newtonian, and we

assume here as Porta Mana and Zanna (2014) did that retain-

ing these further terms in the series provides a way to model

the turbulent stress. This approach to parametrizing turbulence is

not new ( Rivlin, 1957; Crow, 1968; Lumley, 1970; Meneveau and

Katz, 20 0 0 ); the novelty of our study is in the application of this

approach to the quasi-geostrophic turbulence that characterises

oceanic mesoscale eddies, specifically the eddy Reynolds stresses

due to those eddies. 

In assuming a non-Newtonian stress-strain relation to be valid

for the turbulent flow, we are not assuming the ocean to be an

actual non-Newtonian fluid (water is Newtonian). An example of

an actual non-Newtonian flow is a fluid containing polymers, i.e.
acro-molecules comprised of long chains of thousands of linked

olecules ( Spurk, 1997 ). Such fluids are known to show depen-

ence of the viscosity on the fluid shear, analogously to how the

 Smagorinsky, 1963 ) parametrization scheme represents turbulence

ith a viscosity coefficient that depends on the fluid deforma-

ion. The additional stress tensor terms for such fluids represent

he rectified effects of the macro-molecule dynamics; for example,

hear-thinning behaviour, where the fluid viscosity decreases at in-

reased shear, can result from macro-molecules being more likely

o get tangled together at lower shears. By attempting to model

urbulence using similar mathematical expressions, we presume

hat turbulent eddies represent a “microstructure” in the fluid hav-

ng some net effect on the “macro” flow that we wish to model.

he heuristic justification for this approach is therefore similar to

hat of eddy viscosity (in which an analogy is made between ran-

om molecular motions and turbulent fluid motions). Just as labo-

atory experiments are used to validate stress-strain relations for

ctual non-Newtonian fluids, here we validate our approach us-

ng results from eddy-resolving numerical simulations of an ocean

rimitive equations model in an idealised configuration. 

The paper is structured as follows. In Section 2 we consider

ossible stress tensors applicable to the ocean problem, and con-

ider the effects of one proposed parametrization on momen-

um, vorticity, energy and enstrophy budgets. Section 3 then uses

iagnostics from numerical simulations with a primitive equa-

ions model to evaluate the vorticity forcing by the proposed

arametrization. In Section 4 we discuss how our approach re-

ates the Reynolds stress tensor of the eddying flow. Conclusions

re given in Section 5 . 

. Theory 

Our approach is to parametrize the horizontal eddy Reynolds

tress tensor directly. The momentum and vorticity forcings due

o parametrized eddies are then calculated from the stress tensor

s flux divergences, and the parametrization satisfies conservation

onstraints if the relevant flux components vanish on the bound-

ries (e.g. Marshall et al., 2012 ). The parametrized Reynolds stress

ensor will depend on the spatial gradients of velocity, and will

e concisely expressed in terms of the flow deformation and the

orticity, allowing for an intuitive description of its behaviour. We

ill argue that the proposed stress tensor provides a parametriza-

ion that has the desirable quasi-geostrophic turbulence properties

f allowing for upgradient fluxes and enstrophy dissipation. 

The structure of the section is as follows. Section 2.1 introduces

he deformation tensors on which the stress tensor may depend.

ection 2.2 describes the momentum and vorticity forcing obtained

rom the proposed parametrization, and Section 2.3 considers its

ffects on energy and enstrophy. Section 2.4 then discusses its be-

aviour in more qualitative terms. 

.1. Form of the stress tensor 

Consider a general stress tensor, T , representing the effects of

ddies on a two-dimensional (2D) fluid flow – that is, T is a

arametrization for the horizontal eddy Reynolds stress tensor. The

tress tensor divergence ∇ · T , where ∇ ≡ ( ∂ x , ∂ y ), is a vector

hose components give the forcing due to parametrized eddies

n the corresponding vector components of the momentum equa-

ion: the x -component of ∇ · T appears on the right-hand side

RHS) of the prognostic equation for the zonal velocity, u , and the

 -component of ∇ · T appears on the RHS of the equation for

he meridional velocity, v . We assume an expression for T can be

ound that approximates the effects of small-scale turbulence on

he large-scale flow. With respect to the assumption of 2D flow, al-
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hough quasi-geostrophic turbulence (Charney, 1971) is “quasi-2D”,

e focus here on the simpler barotropic case. 

Following Rivlin and Ericksen (1955) , we assume T can be ex-

ressed as a linear combination of tensors whose components are

unctions of the spatial gradients of velocity and their time deriva-

ives. The velocity gradient tensor is 

u = 

[
u x u y 

v x v y 

]
(1) 

hose symmetric and antisymmetric parts, S = 

1 
2 (∇u + ∇u 

T ) and

 = 

1 
2 (∇u − ∇u 

T ) , are referred to as the strain and vorticity ten-

ors, respectively. Since T is symmetric 1 it can be written in the

orm 

 = 

[
a 0 

0 a 

]
+ 

[
b c 
c −b 

]
= a I + bR + + cR × (2) 

here a, b, c are scalar valued functions. We will use the 2D ma-

rices 

 = 

[
1 0 

0 1 

]
, R = 

[
0 −1 

1 0 

]
, R + = 

[
1 0 

0 −1 

]
, R × = 

[
0 1 

1 0 

]
(3) 

o provide a convenient basis for representation of any 2D matrix

e.g. Waterman and Lilly, 2015 ). Since R is antisymmetric it does

ot appear in T , and the matrices R + and R × represent reflection

n the x -axis and reflection in an axis oriented at 45 ° to the x -axis,

espectively. Using these matrices, S and W can be written as 

 = 

1 

2 

(σ I + 

˜ D R + + D R ×) , W = 

1 

2 

ζR , (4) 

here ζ = v x − u y and σ = u x + v y are the vorticity and divergence,

espectively. Stretching deformation and shearing deformation are

enoted by ˜ D = u x − v y and D = u y + v x , respectively. Nonzero val-

es of the fields ˜ D and D represent changes in the shape of a fluid

arcel. For ˜ D > 0 , a parcel is stretched in the x -direction and con-

racted in the y -direction, and vice versa for ˜ D < 0 . The effect of D

s similar, but the stretching is aligned with axes rotated 45 ° from

he x, y -axes. At any given point in the flow it is possible to choose

 reference frame, referred to here as the deformation frame , that

ields a simpler picture of the deformation: by rotating to new

oordinate axes x ′ , y ′ at an angle γ = 

1 
2 tan 

−1 (D/ ̃  D ) with respect

o the original x -axis, we obtain D 

′ = 0 and 

˜ D 

′ = δ > 0 in the new

rame. Here δ = 

√ 

˜ D 

2 + D 

2 is the total deformation, and like ζ and

it is invariant under rotation of the coordinate axes. In the defor-

ation frame, the fluid parcel is stretched in the x ′ direction and

ontracted in the y ′ direction, and the magnitude of the stretching

s δ, which gives the fractional rate of change in the parcel’s as-

ect ratio (analogously to σ giving the fractional rate of change of

ts area). The x ′ -axis in the deformation frame is referred to as the

xis of dilation . Spensberger and Spengler (2014) provide further

escription of flow deformation, including situations of interest for

tmospheric synoptic-scale flows. Note also that the Smagorinsky

1963) viscosity coefficient depends on the flow deformation. 

In 2D or 3D, the Rivlin and Ericksen (1955) tensors are given

y 

 1 = 2 S (5) 

 2 = 

D A 1 

Dt 
+ ∇u 

T A 1 + A 1 ∇u (6) 

. . . 
1 The Reynolds stress tensor, which T is intended to parametrize, is symmetric 

nd hence so should be T . In general a fluid stress tensor is required to be sym- 

etric to satisfy angular momentum conservation; see Griffies (2004 , Sec. 17.3.3) 

r Spurk and Aksel (2008 , Sec. 2.3). 

T  

c  

p  

s  

l  
 m +1 = 

D A m 

Dt 
+ ∇u 

T A m 

+ A m 

∇u (7) 

here 

D 

Dt 
≡ ∂ 

∂t 
+ u 

∂ 

∂x 
+ v 

∂ 

∂y 
(8) 

s the material derivative. Eddy viscosity is obtained by setting T =
 

(ν) , where 

 

(ν) ≡ νA 1 = 2 νS , (9) 

here in general ν can be a fourth-order tensor (e.g. Griffies, 2004 ,

ec. 17.4) but here we take it to be a constant coefficient. Eq.

9) yields downgradient fluxes of momentum and vorticity if ν >

, since T ( ν) leads to a diffusive forcing in the equations of mo-

ion for both momentum and vorticity. Nondiffusive or upgradient

ffects can be obtained by using A 2 and subsequent terms, and

e wish to determine whether these tensors are useful contribu-

ions to the Reynolds stress tensor for the ocean turbulence clo-

ure problem: can the effects of unresolved or partially resolved

esoscale eddies on the larger-scale flow be usefully modelled by

ncluding the terms κm 

A m 

for m > 1 in T ? Here the κm 

are as-

umed, for simplicity and also guided by the results of Porta Mana

nd Zanna (2014) and Zanna et al. (2016) , to be constant coeffi-

ients that play a role analogous to the eddy viscosity coefficient ν
i.e. κ1 ); the functional dependence of T on the flow and on spa-

ial location is to be captured by the A m 

, not by the κm 

. The key

hysical requirement is that inclusion of such terms should provide

pgradient momentum fluxes that rectify the unrealistically weak

nd quiescent large-scale jets typically found in coarse-resolution

nd eddy-permitting ocean models. 

We consider here the part of A 2 that does not involve a time

erivative, the term ∇ u 

T A 1 + A 1 ∇ u . This choice is motivated partly

y simplicity (for the same reason we do not consider the A m 

for m

 2), and also by the desire to construct a parametrization that is a

unction of the instantaneous state of the flow. Including the time

erivative term would introduce an explicit dependence on previ-

us times, which could perhaps be a model for “memory” effects in

he flow due to sub-gridscale eddies. There is evidence of the use-

ulness of this approach ( Porta Mana and Zanna, 2014; Zanna et al.,

016 ), but it is not the focus of the current study. Considering then

he ∇ u 

T A 1 + A 1 ∇ u term, using ∇ u = S + W and ∇u 

T = S − W we

ave 

 u 

T A 1 + A 1 ∇ u = ( S − W )2 S + 2 S ( S + W ) 

= 4 S 2 + 2( S W − W S ) . (10) 

estricting to the 2D case and using the expressions defined in Eq.

4) , we obtain 

 W = 

1 

4 

(σζR − ˜ D ζR × + DζR + ) , (11) 

 S = 

1 

4 

(σζR + 

˜ D ζR × − DζR + ) , (12) 

 

2 = 

1 

4 

(δ2 − σ 2 ) I + σ S (13) 

eading to 

 u 

T A 1 + A 1 ∇ u = (δ2 − σ 2 ) I + 4 σ S + ζ (D R + − ˜ D R ×) , (14)

ith 

 W − W S = 

1 

2 

ζ (D R + − ˜ D R ×) . (15) 

his tensor, multiplied by some constant coefficient, is a useful

andidate for a parametrized Reynolds stress tensor because it de-

ends on the vorticity and the flow deformation and, unlike S it-

elf, does not yield only downgradient fluxes, as will be shown be-

ow. In contrast, S 2 ( Eq. (13 )) appears less useful, since the term



102 J.A. Anstey, L. Zanna / Ocean Modelling 112 (2017) 99–111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

∇  

F

∇  

T  

o  

g

∇  

w

	  

h  

a  

r  

s  

(  

i  

n  

d  

t  

ν
 

s

T

 

w  

κ  

(

 

a

 

R  

p  

d  

o  

c

 

d

	

 

a  

d

 

S  

t  

e

involving I contributes no forcing of vorticity since it projects onto

the pressure. The term σ S could yield upgradient or downgradi-

ent flux depending on the sign of σ as well as the sign of the

constant coefficient that would multiply the term, but it will van-

ish for incompressible non-divergent 2D flow. Although σ = 0 for

the barotropic case under consideration here, we will retain σ in

our expressions in anticipation of possible future extension of the

framework to include quasi-2D effects. 

The expression S W − W S has arisen in other approaches to

modelling the Reynolds stress. Pope (1975 , hereafter P75) consid-

ered the possible forms a Reynolds stress tensor depending on

mean-flow gradients could take, and described this approach as

a generalised “effective viscosity”2 . A maximum of ten candidate

tensors, T m 

( m = 1 , 2 , . . . , 10 ), were found, of which S is the first

and S W − W S the second (see P75, Sec. 3, for the complete list). If

we apply the 2D representations of S and W ( Eq. (4) ) to the P75

expressions, and ignore terms involving I because they will not af-

fect the vorticity forcing, then the T m 

can be shown to be equiva-

lent to (omitting any constant coefficients) 

T 1 = S T 2 = S W − W S 
T 3 = σ S T 4 = 0 

T 5 = −σ ( S W − W S ) T 6 = −1 

2 

ζ 2 S 

T 7 = 

1 

4 

ζ 2 ( S W − W S ) T 8 = 

1 

4 

(δ2 − σ 2 )( S W − W S ) 

T 9 = −1 

2 

ζ 2 σ S T 10 = 

1 

4 

ζ 2 σ ( S W − W S ) 

(16)

All of the T m 

are functions of either S or S W − W S , and if σ = 0

then only five of the T m 

need be considered ( m = 1 , 2 , 6 , 7 , 8 ). An-

other turbulence closure in which S W − W S appears is the “non-

linear gradient model” approach (Leonard 1974; Meneveau and

Katz, 20 0 0), in which a Taylor series expansion using resolved-flow

gradients is used to model the turbulent eddy statistics. It will be

shown in Section 4 that the Taylor series can be expressed in terms

of S W − W S . 

2.2. Momentum and vorticity forcing 

By using a stress tensor to define the parametrization, the forc-

ing for either the horizontal momentum or vertical vorticity (i.e.

v x − u y ) equations is readily obtained. This makes the parametriza-

tion suitable for models that evolve momentum, such as ocean

GCMs that integrate the primitive equations. Since the vorticity

forcing carries over as a forcing in the quasi-geostrophic poten-

tial vorticity equation ( Vallis, 2006 , Sec. 5.4.2), the parametrization

could also be used in idealized quasi-geostrophic models. However

it would only represent the horizontal Reynolds stress due to ed-

dies, i.e. the forcing due to horizontal eddy momentum fluxes, ig-

noring the eddy buoyancy fluxes. 

The momentum flux divergence corresponding to Eq. (2) is the

2D vector 

∇ · T = ∇a + R + ∇b + R ×∇c = 

[
a x + b x + c y 
a y − b y + c x 

]
, (17)

i.e. the forcing of zonal momentum is a x + b x + c y and of merid-

ional momentum is a y − b y + c x . Using the eddy viscosity form

given by Eq. (9) , T (ν) = 2 νS , then from Eq. (4) we have a = νσ, b =
ν ˜ D , c = νD, giving u, v -forcing tendencies u t = ν(σx + 

˜ D x + D y ) =
ν∇ 

2 u + νσx and v t = ν(σy − ˜ D y + D x ) = ν∇ 

2 v + νσy . 

The vorticity flux associated with the above momentum forcing

( Eq. (17) ) is 

F ≡ −∇ ⊥ · T (18)
2 Despite the name “effective viscosity”, diffusion is not the only possible be- 

haviour arising from a stress tensor that depends on mean-flow gradients. 2
here the operator ∇ ⊥ is defined as 

 ⊥ ≡ R∇ = (−∂ y , ∂ x ) . (19)

or the stress tensor of Eq. (2) this yields 

 ⊥ · T = ∇ ⊥ a − R ×∇b + R + ∇c = 

[
−a y − b y + c x 
a x − b x − c y 

]
. (20)

he forcing in the vorticity equation due to T is given by the curl

f the momentum forcing, ∇ · T ( Eq. (17) ), equivalent to the diver-

ence of Eq. (20) , 

 ⊥ · (∇ · T ) = ∇ · (∇ ⊥ · T ) = 	2 c − 2 b xy , (21)

here the operator 

2 ≡ ∂ xx − ∂ yy (22)

as been defined, and the interchangeability of the order of curl

nd divergence operators in Eq. (21) is due to T being symmet-

ic. The operators appearing in Eq. (21) , 	2 and 2 ∂ xy , could be de-

cribed as “generalized Laplacians” following Waterman and Lilly

2015) 3 . Eq. (21) is equivalent to the convergence of the vortic-

ty flux, −∇ · F . The isotropic part of the stress tensor, a I , does

ot contribute to the vorticity forcing because it appears as a gra-

ient, ∇a , in the momentum equations (like the pressure). For

he eddy viscosity form T ( ν) , the resulting ζ -tendency is ζ (ν) 
t =

(	2 D − 2 ̃  D xy ) = ν∇ 

2 ζ . 

Using Eq. (15) , we define a candidate parametrized Reynolds

tress tensor 

 

(κ) = 2 κ( S W − W S ) 

= κζ (D R + − ˜ D R ×) , (23)

here κ is a constant coefficient, analogous to ν in T ( ν) . In SI units,

has units of m 

2 . Then a = 0 , b = κζD, c = −κζ ˜ D , giving from Eq.

17) the momentum tendencies 

∂u 

∂t 

(κ) 

= κ
[
(ζD ) x − (ζ ˜ D ) y 

]
∂v 
∂t 

(κ) 

= −κ
[
(ζD ) y + (ζ ˜ D ) x 

]
(24)

nd from Eq. (21) the vorticity tendency 

∂ζ

∂t 

(κ) 

= −κ
[
	2 (ζ ˜ D ) + 2 ∂ xy (ζD ) 

]
. (25)

ecalling that ζ = v x − u y , ˜ D = u x − v y and D = u y + v x , the

arametrized momentum and vorticity forcings ( Eqs. (24) and ( 25 ))

epend on spatial gradients of velocity up to second and third

rder, respectively, and hence the order of differentiation in both

ases is the same as that of Laplacian eddy viscosity. 

The above expression can be further simplified. Expanding the

erivatives in Eq. (25) gives 

2 (ζ ˜ D ) + 2 ∂ xy (ζD ) = 

˜ D 	2 ζ + 2 Dζxy + ζ (	2 ˜ D + 2 D xy ) 

+2(ζx ̃  D x − ζy ̃  D y + ζy D x + ζx D y ) 

= 

˜ D 	2 ζ + 2 Dζxy + ζ∇ 

2 σ + 2 ∇ζ · ∇σ , (26)

nd hence for incompressible 2D flow ( σ = 0 ) the vorticity ten-

ency corresponding to T ( κ) simplifies to 

∂ζ

∂t 

(κ) 

= −κ( ̃  D 	2 ζ + 2 Dζxy ) . (27)

ince Eqs. (25) and (27) involve only second-order spatial deriva-

ives, the order of differentiation is no higher than that of basic

ddy viscosity (i.e. of the forcing term ν∇ 

2 ζ ). The derivatives of ζ
3 In the notation of Waterman and Lilly (2015) , ∇ 

T G∇ = ∂ xx − ∂ yy and ∇ 

T H∇ = 

 ∂ xy , where G and H are the same as R + and R × , respectively, in our notation. 
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re also multiplied by first-order derivatives of the velocity, which

ntroduces slightly more complication, but no more so than the

ell-established ( Smagorinsky, 1963 ) scheme in which the eddy

iscosity coefficient is proportional to δ. Since higher derivatives

mphasise smaller scales of motion, there is some justification in

hinking of Eq. (27) as representing the effects of a large-scale ve-

ocity field (via ˜ D and D ) acting to deform a smaller-scale vorticity

eld (via 	2 ζ and 2 ζ xy ); Section 2.4 gives more discussion. For

he variants on the above given by Eq. (16) , the forcing would be

iven by similar expressions with additional terms arising from the

ow-dependent coefficients of S or S W − W S . 

The form given by Eq. (27) lends itself to the following in-

erpretation of the forcing as a modified viscosity. Let the total

arametrized vorticity tendency be 

∂ζ

∂t 

(ν,κ) 

= ν∇ 

2 ζ − κ( ̃  D 	2 ζ + 2 Dζxy ) , (28) 

nd then consider the flow in the deformation frame (as defined

n Section 2.1 ), which is permissible because it can be shown that

he operator ˜ D 	2 + 2 D∂ xy appearing in Eq. (27) is invariant under

otation, as is the vorticity itself. 4 Then Eq. (28) in this frame be-

omes 

∂ζ

∂t 

(ν,κ) 

= ν(ζxx + ζyy ) − κδ(ζxx − ζyy ) 

= (ν − κδ) ζxx + (ν + κδ) ζyy . (29) 

ecalling that δ > 0 (by definition of the deformation frame), the

otal parametrized forcing then resembles a kind of anisotropic vis-

osity, with different viscosity coefficients acting in the directions

arallel and perpendicular to the axis of dilation. Whether the vis-

osity is enhanced or reduced in either direction depends on the

agnitude of the deformation, as well as the sign and magnitude

f κ . 

.3. Energy and enstrophy 

Since the oceanic mesoscale flow is quasi-2D, we expect energy

o be cascaded to large scales, and enstrophy to small scales, on

verage (Charney, 1971; Vallis, 2006). These cascades result from

he nonlinear advective terms in the equations of motion, and the

oal of a parametrization for the Reynolds stresses is to accurately

odel the behaviour of these terms and implied cascades. Hence

t is desirable for the parametrization to dissipate enstrophy, so

s to mimic the loss of small-scale enstrophy that in reality ul-

imately occurs due to molecular viscosity. In models, eddy vis-

osity will tend to dissipate enstrophy at small scales, but it will

lso tend to give spurious loss of energy at small scales, and var-

ous parametrization schemes have been designed to counteract

his effect (e.g. Eden and Greatbatch, 2008; Jansen and Held, 2014 ).

ence it is also desirable that the parametrization conserves total

nergy, so as not to contribute to this spurious loss. 

A stress tensor T expressed in the form given by Eq. (2) can be

hown to give a forcing in the 2D energy equation of 

∂E 

∂t 
= u · (∇ · T ) = ∇ · ( T u ) − aσ − b ̃  D − cD, (30) 

here E ≡ 1 
2 (u 2 + v 2 ) . Then for T ( ν) , for which a = νσ, b = ν ˜ D , c =

D, 

∂E 

∂t 
= ∇ · (2 νS u ) − ν(σ 2 + δ2 ) (31) 
4 Note from Eq. (26) that the full expression for the forcing, for the case when σ

 0, is invariant under rotation since it is the curl of a vector. The ∇ 

2 operator, ζ

nd σ are invariant, hence ζ∇ 

2 σ is invariant, as is ∇ζ · ∇σ since it is the cosine of 

he angle between ∇ζ and ∇σ , multiplied by | ∇ζ || ∇σ |, all of which are invariant. 

his invariance is of course required; since ζ is invariant under rotation, it cannot 

e possible to obtain a different value for ∂ ζ / ∂ t by rotating the coordinate axes. 

i  

g  

h

t

onsistent with eddy viscosity being a sink of energy (for ν > 0).

or the proposed parametrization T ( κ) the energy tendency is 

∂E 

∂t 
= ∇ ·

[
2 κ( S W − W S ) u 

]
(32) 

ince a = 0 , b = κζD, c = −κζ ˜ D implies that −b ̃  D − cD =
ζ (−D ̃

 D + 

˜ D D ) = 0 , i.e. the non-flux energy tendency term

anishes 5 . Since the energy forcing by T ( κ) is the divergence of

 flux, its domain-integrated value depends on the flux at the

oundaries. If the boundary flux is zero then the parametrization

ill conserve energy, which is the case for both no-slip boundary

onditions ( u, v = 0 on the boundary) and free-slip conditions

 ζ = 0 on the boundary) 6 . Because the parametrization conserves

nergy, its effect should be to redistribute the resolved eddy

nergy, acting against dissipation. 

The enstrophy tendency corresponding to a stress tensor T is

iven by 

∂Z 

∂t 
= −ζ∇ · F = −∇ · (F ζ ) + F · ∇ζ , (33) 

here Z ≡ 1 
2 ζ

2 is the enstrophy, and the vorticity flux and vorticity

endency corresponding to T are F and −∇ · F , respectively. Only

he term F · ∇ζ contributes to the global enstrophy budget. 

The vorticity flux for T ( κ) using Eq. (20) is given by 

 

(κ) = κ
[
R ×∇(ζD ) + R + ∇(ζ ˜ D ) 

]
= κ

[
ζ∇ ⊥ ζ + ζ∇ σ + 2 S ∇ ζ − σ∇ ζ

]
(34) 

here the second line follows from Eq. (4) and the identity

 + ∇ ̃

 D + R ×∇D = ∇ ⊥ ζ + ∇ σ . The ∇ ⊥ ζ term does not contribute

o the vorticity forcing (since ∇ · ∇ ⊥ ζ = 0 ) or to the non-flux term

 

( κ) · ∇ ζ (since ∇ ζ · ∇ ⊥ ζ = 0 ). Assuming incompressible flow

 σ = 0 ), the non-flux contribution to the enstrophy tendency then

ecomes 

 

(κ) · ∇ ζ = 2 κ∇ ζ · S ∇ ζ . (35) 

sing the identity 

D 

Dt 
|∇ζ | 2 = 2 ∇ ζ · D 

Dt 
∇ ζ = 2 ∇ ζ ·

(
∇ 

Dζ

Dt 
− ∇ u 

T ∇ ζ
)

(36) 

= 2 ∇ζ · ∇ 

Dζ

Dt 
− 2 ∇ζ · S ∇ζ , 

hich follows from ∇u 

T = S − W and the antisymmetry of W , the

nstrophy tendency from the non-flux term is then 

∂Z 

∂t 

(κ) 

= 2 κ∇ ζ · S ∇ ζ = −κ
D 

Dt 
|∇ ζ | 2 + 2 κ∇ ζ · ∇ 

Dζ

Dt 
. (37) 

onsider adiabatic motion, for which the quasi-geostrophic equa-

ion of motion in the 2D case is D (ζ + βy ) /Dt = 0 . For motion

n scales smaller than the Rhines scale Z/β, where Z is a typi-

al magnitude of the vorticity, the β-term becomes small, so that

 ζ / Dt ≈0. With β = 2 × 10 −11 m 

−1 s −1 and Z = 10 −5 s −1 (about

0% of a typical midlatitude value of f ) then Z/β = 500 km, which

s considerably larger than the small-scale eddies whose effects we

ish to parametrize. In this case, with Dζ /Dt = 0 the non-flux con-

ribution to the enstrophy budget, Eq. (37) , is proportional to the

arcel-following rate of change of the (squared) magnitude of the

orticity gradient. If κ > 0 then the effect of T ( κ) is to locally re-

ove enstrophy when | ∇ζ | is increasing – that is, when vortic-

ty gradients are sharpening. Since increasing sharpness of vorticity

radients is associated with enstrophy cascading to smaller scales
5 This is true for any tensor for which b = GD, c = −G ̃ D where G is any function; 

ence it is true for all tensors involving S W − W S multiplied by some function. 
6 ζ = 0 on the boundary implies that the parametrization also conserves momen- 

um, since the u, v forcing ( Eq. (24) ) is also a flux divergence. 
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Fig. 1. Schematic of vorticity flux F ( κ) in the deformation frame ( Eq. (39) ). (a) Thick 

purple arrows indicate a velocity field acting to deform fluid parcels by stretching 

them in the horizontal direction and contracting them in the vertical direction. Thin 

purple lines are streamlines. (b) Thin red arrows indicate the vorticity gradient, ∇ζ , 

associated with a small circular patch of vorticity, ζ > 0; the red circle is a vorticity 

contour. Thick purple arrows indicate the sense of the vorticity flux for κ > 0. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Schematic of horizontal structure in x, y -plane of streamfunction for a 

hypothetical banana-shaped eddy, i.e. an eddy that tilts with the shear. The merid- 

ional ( y -direction) structure of the zonal-mean (indicated, in this figure only, by an 

overbar) tendencies associated with the eddy due to T ( κ) ( Eq. (23) ) are shown for 

(b) zonal velocity, (c) meridional velocity and (d) vorticity. Units are arbitrary. In 

(b–d), the red line corresponds to the actual Reynolds stress and the black line to 

the parametrized forcing, and positive (negative) tendencies lie to the right (left) of 

the thin vertical line. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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( Weiss, 1991; Vallis, 2006 ), this behaviour is consistent with the

small scales providing a sink of enstrophy. 

Although a downscale enstrophy cascade is expected to occur

at scales of motion that are effectively adiabatic (i.e. in the ab-

sence of direct large-scale forcing, as would occur in the ocean

interior), any practicable numerical model must include some dis-

sipation at small scales leading to diabatic terms. Consider a spa-

tial domain within which enstrophy dissipation is assumed to oc-

cur: DZ/Dt < 0 , where the overbar represents the spatial average

at a fixed time. We then have DZ/Dt = ζ Dζ /Dt < 0 , so that ζ and

D ζ / Dt are anticorrelated over this domain, which means that ∇ζ
and ∇D ζ / Dt point in opposite directions. (Since D ζ / Dt is equal to

the total of all forcings acting on the vorticity, this is simply say-

ing that where ζ > 0 the forcing is acting to reduce ζ , and vice

versa.) Hence 2 κ∇ ζ · ∇ Dζ /Dt < 0 if κ > 0, making this term in Eq.

(37) an overall enstrophy sink, consistent with the initial assump-

tion that there is small-scale dissipation that removes enstrophy.

On the other hand, κ < 0 would make this term into an overall

enstrophy source, which is inconsistent with the initial assump-

tion. 

2.4. Flux behaviour 

Here we consider the qualitative behaviour of the proposed

parametrization T ( κ) on the vorticity and momentum budget. From

Eq. (34) , ignoring the ∇ ⊥ ζ term that does not affect the vorticity

forcing, assuming σ = 0 , and using Eq. (4) , the vorticity flux is 

F (κ) = 2 κS ∇ζ = κ( ̃  D R + + D R ×) ∇ζ . (38)

If the coordinate axes are rotated to the deformation frame (as de-

fined in Section 2.1 ) then the vorticity flux simplifies to 

F (κ) = κδR + ∇ζ . (39)

The conservation law for a tracer whose density is A and whose

flux is F A , without sources or sinks, is 

∂A 

∂t 
+ ∇ · F A = 0 . (40)

This states that the tendency of A due to transport by the flux F A 
is −∇ · F A , so that the tracer accumulates in regions where the flux

F A converges (i.e., ∇ · F A < 0) and vice versa. Writing Eq. (25) in

this form using the vorticity flux in the deformation frame gives 

∂ζ

∂t 

(κ) 

+ ∇ · (κδR + ∇ζ ) = 0 . (41)

Fig. 1 indicates schematically the sense of the vorticity flux for

the case κ > 0. Here we suppose that δ represents the effect of

a larger-scale deforming flow on a smaller-scale patch of vorticity
i.e. we consider the interaction between different scales of mo-

ion). In Fig. 1 a, a deforming flow, δ, is schematically represented

y streamlines and velocity vectors. Fig. 1 b depicts the sense of

 

(κ) = κδR + ∇ζ (represented by large arrows) resulting from δ act-

ng on a small patch of vorticity (whose ∇ζ is shown by thin ar-

ows), for κ > 0. The vorticity flux removes positive vorticity from

he regions to the left and right of the patch, and adds positive vor-

icity to the regions above and below the patch, which will tend to

trengthen vorticity gradients in one direction and weaken them in

he other, consistent with the general behaviour indicated by Eq.

29) . Hence the effect of F ( κ) is qualitatively consistent with our

oal that the parametrization should be able to not only weaken

orticity gradients (as eddy viscosity already does) but also to

trengthen them, as required to maintain and strengthen jets. 

Due to the nonlinearity of the vorticity flux, Eq. (41) represents

nteraction between different scales. To illustrate this using a 2D

ourier expansion of the streamfunction, ψ = 

∑ 

k ψ k (t) exp (i k · x ) ,

here ψ k ( t ) is the time-dependent amplitude of the spatial mode

f wavenumber k , from Eq. (27) it can be shown that the vorticity

endency for a single Fourier mode with wavenumber k + p is 

∂ζk+ p 
∂t 

(κ) 

∝ −2 κ(k 2 + l 2 ) 
[ 

pq (k 2 − l 2 ) − kl(p 2 − q 2 ) 
] 
ψ k ψ p (42)

here k = (k, l) , p = (p, q ) are the spatial wavevectors of the ζ
nd δ terms in Eq. (41) , respectively. Nonzero vorticity tendency

equires that k � = p , i.e. ∇ · F ( κ) represents interaction between

ifferent scales of motion. 

Transfer of information between scales is required in order for

ddies to produce upgradient fluxes that reinforce large-scale jets.

t is well known that eddies tilting “with the shear”, as if advected

y a sheared mean flow, act to flux momentum into the core of a

et and remove it from the jet flanks ( Vallis, 2006; Dritschel and

cIntyre, 2008 ). The parametrization T ( κ) requires that some de-

ormation be present in order to give a nonzero forcing, e.g. as in

ddy-permitting models. What forcing would result from T ( κ) for

he case of a “banana-shaped” eddy, i.e. an eddy tilting with the

hear? Fig. 2 schematically shows a tilted eddy ( Fig. 2 a) and the

esulting forcing due to T ( κ) when averaged zonally ( Fig. 2 b–d).
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ince the eddy structure is given, the Reynolds stress can be cal-

ulated and is seen in Fig. 2 b–d to agree qualitatively with the

arametrization. In particular, Fig. 2 b shows that eastward acceler-

tion is obtained in the centre of the eddy and westward acceler-

tion on its flanks, as desired. This suggests that T ( κ) can produce

easonable results, such as upgradient momentum fluxes and jet

harpening, if its input contains partially resolved eddies. 

The qualitative agreement in Fig. 2 is not sensitive to the pre-

ise details of the eddy shape, so long as the eddy tilts with the

hear. The reason for agreement is found by plotting the x, y struc-

ure of u, v , ζ , ˜ D and D (not shown): the spatial phase relation-

hip between u and v is similar to that between ζ and 

˜ D , lead-

ng to similar correlations between them when zonally averaged.

his suggests that the impact of T on a large-scale zonal jet would

e qualitatively similar to that of the true Reynolds stresses, pro-

ided the resolved-flow spatial structures of ζ , ˜ D , D are similar

nough to the spatial structures of the unresolved eddies. This ar-

ument is essentially the “self-similarity” hypothesis used to jus-

ify the nonlinear gradient model, mentioned in Section 2.1 and to

e discussed further in Section 4 . In the next section we examine

hether numerical simulations support this hypothesised similar-

ty. 

. Model results 

.1. Model description 

We use the MITgcm, a hydrostatic primitive equations ocean

CM ( Marshall et al., 1997 , see http://mitgcm.org for model source

ode, documentation, and further information.). The model setup

imics that of idealised double-gyre experiments commonly per-

ormed with quasi-geostrophic (QG) models; specifically, param-

ters are chosen to match as closely as possible those used in

orta Mana and Zanna (2014) , albeit with increased vertical res-

lution suitable for the primitive equations. 

The model spatial domain extends 40 0 0 km zonally and merid-

onally, and 4 km deep with a flat bottom. Planetary rotation is

iven by Coriolis parameter f = 10 −4 s −1 on a beta plane with

= 2 × 10 −11 m 

−1 s −1 (and Cartesian x, y, z coordinates are used).

he spatial resolution is 7.5 km horizontally, and 44 levels verti-

ally with vertical level thickness increasing with depth as is con-

entional. Explicit dissipation mechanisms are Laplacian horizon-

al viscosity of 100 m 

2 s −1 , vertical viscosity 10 −5 m 

2 s −1 , and lin-

ar bottom drag with coefficient 1 . 2 × 10 −4 m s −1 . Lateral bound-

ry conditions are free-slip, there is no rigid lid, and sea-surface

emperature is relaxed with a 360-day relaxation timescale to-

ard a annual mean target state varying linearly from 25 °C at

he southern boundary to 15 °C at the northern boundary. The

odel timestep is 300 s. A linear thermodynamic equation of state

s used, with no salinity. Forcing is by a wind stress that is con-

tant in time and mimics the extratropical atmospheric jet struc-

ure, with a midlatitude maximum of 0 . 3 N m 

−2 and a southwest-

o-northeast tilt. 

.2. Diagnostics 

Model output was saved at 10-day intervals, and in some in-

tances at 3-day or 1-day intervals to test the sensitivity of the di-

gnostics to the sampling frequency. Unless otherwise stated, the

0-day data are analysed. Integrations were begun from a state of

est and required approximately 3–5 years to spin up, as indicated

y time series of total horizontal kinetic energy. Integrations were

nded sometime between 10 and 20 years, and diagnostics are cal-

ulated using data from the statistical steady state. 

To diagnose the eddy forcing, we use coarse-graining to calcu-

ate the difference between the eddy forcing in a high-resolution
odel and the eddy forcing that would be expected in a hypothet-

cal model having lower resolution. Let the equation of motion for

orticity in the high resolution model be 

∂ζ f 

∂t 
+ u f · ∇ f ζ f + βv f = F f + ν f ∇ 

2 
f ζ f . (43) 

he subscript f on all quantities denotes the fine-grain model: ζ f 

s defined on the high-resolution ( x, y ) grid, spatial derivatives

(∇ f , ∇ 

2 
f 
) are calculated using this grid, and ν f is the constant vis-

osity coefficient. The imposed wind stress curl forcing is F f and

he only parametrization of eddies is the viscous term, ν f ∇ 

2 
f 
ζ f .

he Coriolis parameter is f 0 + βy where f 0 and β are constants.

he fine-grain model adequately resolves the eddy forcing – in

ther words, we regard the fine-grain model as representing the

true” effect of the eddy forcing on the larger-scale mean flow. 

We then coarse-grain Eq. (43) by averaging over some area con-

aining more than one of the gridboxes of the fine-grain model: 

∂ ζ f 

∂t 
+ u f · ∇ f ζ f + βv f = F f + ν f ∇ 

2 
f 
ζ f . (44) 

he overbar denotes the coarse-graining operation, i.e. horizontal

patial averaging procedure. It does not affect the temporal or ver-

ical discretization. 

The ideal behaviour of a hypothetical lower-resolution model is

hat it mimics (statistically) the evolution given by ∂ ζ f /∂t . Let this

ower resolution model evolve according to 

∂ζc 

∂t 
+ u c · ∇ c ζc + βv c = F c + νc ∇ 

2 
c ζc + S ζ (45) 

here the subscript c refers to the coarse-grain grid on which

elds are defined. The viscosity of a lower resolution model is nec-

ssarily larger than the smallest value allowable in the fine-grain

odel: νc > ν f . The additional term S ζ is a parametrization of the

ddy forcing, intended to capture the missing effects of the unre-

olved eddies and thereby yield a more realistic mean flow. 

The explicit form of S ζ , as a function of the coarse-grain flow,

s at this point unknown. We use the fine-grain simulation, coarse-

rained according to Eq. (44) , to diagnose S ζ so as to compare it

ith the forcing given by any proposed parametrization that can

e expressed as a function of the coarse-grain flow, such as T ( κ) .

ince we want the evolution of ζ c to mimic that of ζ f , let ∂ ζc /∂ t =
 ζ f /∂t . Then combining Eqs. (44) and (45) , 

u f · ∇ f ζ f − βv f + F f + ν f ∇ 

2 
f 
ζ f = −u c · ∇ c ζc − βv c + F c 

+ νc ∇ 

2 
c ζc + S ζ , (46) 

nd then with v f = v c , and if the imposed large-scale forcing is

mooth enough that F f = F c , the diagnosed eddy source function

or vorticity is then 

 ζ = u c · ∇ c ζc − u f · ∇ f ζ f + ν f ∇ 

2 
f 
ζ f − νc ∇ 

2 
c ζc . (47) 

he same procedure can be followed for other flow fields.

he corresponding expressions for momentum (recall from

ection 3.1 that u, v are the actual prognostic variables in our

odel) are 

 u = u c · ∇ c u c − u f · ∇ f u f + ν f ∇ 

2 
f 
u f − νc ∇ 

2 
c u c 

+ β( v f y f − v c y c ) −
∂ p f 

∂x f 
+ 

∂ p c 

∂x c 
, (48) 

 v = u c · ∇ c v c − u f · ∇ f v f + ν f ∇ 

2 
f 
v f − νc ∇ 

2 
c v c 

− β( u f y f − u c y c ) −
∂ p f 

∂y f 
+ 

∂ p c 

∂y c 
. (49) 
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Fig. 3. Time-mean barotropic streamfunction in the idealized primitive equations 

model using days 3500–7210 ( ≈10 years of data) sampled at 10-day intervals. Red 

is clockwise circulation, blue counterclockwise. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Vorticity at the z = −415 m level on day 3600 in the high resolution model 

(7.5 km horizontal grid scale). Contour scale is nonlinear (0.05, 0.1, 0.2, 0.4, ...). 
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7 The streamfunction shown in Fig. 3 is qualitatively representative of the time- 

mean flow at this layer and others in the upper ocean. Since we will be evaluating 

the proposed parametrization against the vorticity source function, S ζ , it is appro- 

priate to discuss a single layer because the parametrized forcing would act on the 

horizontal flow in each layer, not on the vertically integrated horizontal flow. 
Here additional terms involving β and the pressure gradient arise

that did not appear in the corresponding expression for vorticity

( Eq. (47) ). Diagnosis of S ζ has the advantage that the eddy source

term is simpler, not requiring computation of the extra terms ap-

pearing in the expressions for S u and S v , but the disadvantage that

an extra order of differentiation is required (exacerbating numer-

ical inaccuracies). Due to the considerable simplification provided

by S ζ , and also motivated by the fundamental role played by vor-

ticity in geostrophic and 2D turbulence, we will consider only the

vorticity source term. (Further discussion regarding the order of

differentiation is given in Section 4.2 .) 

3.3. Simulations 

Time-mean barotropic streamfunction (calculated from the ver-

tically integrated horizontal velocity) is shown in Fig. 3 . The wind-

forced double gyre structure is present, with a strong jet sepa-

rating from the western boundary and extending into the ocean

interior. Corresponding coarse-resolution experiments, with 30 km

horizontal grid spacing (i.e. four times coarser than the model

used in Fig. 3 ) and adjusted horizontal viscosity and timestep

exhibit a substantially weaker time-mean jet (not shown). The

coarse-resolution experiments show considerably less variability

than their high-resolution counterparts: the weak jet tends not

to meander, and the time-mean picture is more representative of

the actual jet structure at any given instant. These problems with

coarse-resolution ocean models – i.e. models too coarse to ade-

quately resolve geostrophic turbulence, which occurs at scales of

10 to 100 km, comparable to the deformation radius – are well

known, and motivate development of parametrizations for the ef-

fect of unresolved eddies on the large-scale flow. 

Fig. 4 uses the vorticity, ζ , to illustrate the strong variability

present in the high-resolution experiment, which is considerably

more realistic than the variability in its low-resolution counter-

parts. The intermediate-depth layer at 415 m is shown here and

in subsequent figures and is taken to be representative of the in-
erior ocean flow 

7 . Turbulent eddies are evident throughout much

f the domain, with the strongest eddies occurring near the west-

rn boundary (a nonlinear contour scale is used in Fig. 4 so that

he weaker eddies elsewhere in the domain can also be visualized).

 strong jet separating from the western boundary, near y ≈20 0 0

m, is readily apparent. The horizontal gradient of vorticity, ∇ζ ,

s sharpest at the jet, where its spatial structure includes varia-

ions on fine scales of order ≈50 km, a few times larger than the

orizontal gridscale of the model (7.5 km). This fine-scale structure

ends to be sharpest within about 10 0 0 km of the western bound-

ry ( x < 10 0 0 km). The jet then becomes more diffuse as it extends

urther eastward (between x ≈10 0 0 km and 30 0 0 km; Fig. 3 ).

ualitatively this behaviour resembles that of the Gulf Stream or

uroshio extension (e.g. Jan et al., 2015 ). 

Fig. 5 shows the diagnosed eddy source function for vorticity,

 ζ , for the same day as shown in Fig. 4 . A coarse graining of n = 4

s used to calculate S ζ , where n represents the length of a side of

 square coarse-grain gridbox in units of the fine-scale grid length

7.5 km; hence n = 4 corresponds to box sides of 30 km length, rep-

esenting a 16-to-1 loss of information between the fine and coarse

rids). From Eq. (47) , calculation of S ζ also requires choosing an

ppropriate value for νc , which should correspond to a typical hor-

zontal viscosity that would be feasible for a model with a hori-

ontal resolution equivalent to the coarse-grain gridbox size. We

se νc = n ν f , where ν f = 100 m 

2 s −1 is the viscosity in the high

esolution model ( Section 3.1 ). Hence for n = 4 , corresponding to

30 km) 2 coarse-grain gridbox, νc = 400 m 

2 s −1 . However, since the

dvective terms in Eq. (47) are considerably larger than the viscous

erms for reasonable values of νc , the results are not sensitive to

his choice. 

As expected, Fig. 5 shows that S ζ is strongest in the region

here the fine-scale variability of the jet is strongest, close to its

eparation from the western boundary. Since S ζ indicates the dif-
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Fig. 5. Eddy source function for vorticity, S ζ ( Eq. (47 )), at the z = −415 m level on 

day 3600 (the same day as shown in Fig. 4 ), for coarse-graining of n = 4 (30 km 

coarse-grained grid scale). Contour scale is nonlinear (0.01, 0.03, 0.1, 0.3, ...). 
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4

erence between the actual eddy forcing and the forcing calculated

sing coarse-grained quantities, large values at the jet reflect the

act that coarse-graining smooths out the sharp gradients that give

ise to a substantial portion of the advective term, u · ∇ζ . In re-

ions where sharp gradients are less common, such as the more

uiescent eastern part of the model domain, S ζ is much smaller

ue to the coarse-grained flow being a reasonably accurate repre-

entation of the actual flow (note the nonlinear contour scale). 

.4. Parametrization diagnostics 

To test whether a proposed parametrization can represent the

ffects of partially resolved eddies, we evaluate its skill in predict-

ng S ζ . Fig. 6 a shows the correlation between S ζ and the vorticity

orcing that would result from a stress tensor T = S W − W S ( Eq.

15) , or equivalently, Eq. (23) divided by the constant 2 κ), where T

s calculated from the coarse-grained fields. The correlation is pos-

tive over most of the domain, with some spatial variation in its

trength. A similar result with only slightly weaker values is ob-

ained if the rank correlation coefficient 8 is used instead, indicat-

ng the result is not strongly sensitive to the presence of extreme

alues (of S ζ or of the parametrized forcing). Importantly, regions

f weaker correlation do not include the jet region that is of prime

nterest. 

The correlations shown in Fig. 6 a indicate that a portion of the

ariance of S ζ is captured by S W − W S , which suggests that a

arametrized Reynolds stress tensor with this dependence on the

ow gradients – i.e. T ( κ) , as defined by Eq. (23) – could form the

eterministic part of a stochastic parametrization. It is also pos-

ible that the correlation is degraded by the two orders of spa-

ial differentiation required to calculate vorticity tendency from a

tress tensor (see Eq. (21) ). An implementation of the parametriza-

ion in this model, in which velocity is prognostic, would use the
8 The Spearman rank correlation is the linear correlation of the ranks of the data 

n the two time series – i.e. for each time series, the data is sorted to determine the 

ank (1,2,... , n ) of each of the n data points. The purpose is to reduce the influence 

f outlier data points on the result ( Wilks, 2006 ). 

4

 

o  
omentum forcing calculated from the parametrized stress ten-

or, which for T ( κ) is given by Eq. (24) . We have also repeated

he correlation calculation of Fig. 6 a using data from the same

igh-resolution idealized QG model run as used in Porta Mana and

anna (2014) (recall from Section 3.1 that our primitive equations

odel setup imitates the QG model setup used in that study). The

esulting correlation map is similar, with slightly higher correlation

alues in the jet region (not shown); this may be consistent with

he QG model generally exhibiting smoother flow structures than

he primitive equations model, which as the vorticity snapshot of

ig. 4 indicates can be prone to noisiness (likely due to internal

aves) near the gridscale. 

Fig. 6 b shows the regression coefficient corresponding to the

orrelation coefficient shown in Fig. 6 a. Since T (κ) = 2 κ( S W −
 S ) , the regression coefficient is an estimate of the value of 2 κ .

Equivalently, Fig. 6 b shows the regression of S ζ against the vor-

icity forcing that would be obtained by dividing Eq. (25) by 2 κ .)

ig. 6 b shows roughly constant values of 2 κ ≈600 to 800 km 

2 over

he meandering jet region ( x ≈ 0 –10 0 0 km, y ≈ 20 0 0 –30 0 0 km),

nd the correlation coefficient ( Fig. 6 a) is also fairly consistent over

his region. Some larger regression coefficients occur elsewhere in

he domain, many of which appear noisy and in some cases corre-

pond to regions of weaker correlation. 

One of the goals of our proposed parametrization is that spa-

ial variations in parametrized eddy forcing should be a function

f the resolved flow via only the deformation tensor on which T ( κ) 

epends, with κ being a fixed constant. That is, when implement-

ng the parametrization, κ should not be prescribed to vary tempo-

ally and spatially; rather, variations in parametrized forcing should

rise spontaneously from the deformation tensor, S W − W S , which

escribes how the forcing depends on the resolved flow up to a

onstant multiplicative factor. The spatial variations of the regres-

ion coefficient seen in Fig. 6 b are encouraging in this respect as

hey are small and the coefficient κ is mostly single signed. Ac-

ordingly, we will assume κ to be constant and interpret the spa-

ial variations in Fig. 6 b as representing a combination of sampling

ariability and physics not captured by T ( κ) . 

We can then estimate 2 κ by averaging the regression coeffi-

ient across the horizontal domain. Fig. 7 a shows the domain-

veraged regression coefficient as a function of the area of the

oarse-grained gridbox, which is ( n 	x ) 2 km 

2 where 	x = 7 . 5 km

s the grid scale of the fine-resolution model (e.g. for the n = 4

ase shown in Fig. 6 b, the gridbox area is 900 km 

2 ). Box-whiskers

how the median, upper and lower quartiles, and 5th and 95th

ercentiles of the spatial distribution of the regression coefficient

i.e. the distribution corresponding to the variability illustrated by

ig. 6 b for the case n = 4 ). It is seen that 2 κ scales linearly with

he coarse-grained gridbox area, and this is illustrated more explic-

tly in Fig. 7 b, which shows the same information as Fig. 7 a but

ith the regression coefficient for each n divided by ( n 	x ) 2 km 

2 .

his suggests that a scale-aware value of κ can be specified, and

hat a reasonable estimate is κ ≈ (n 	x ) 2 / 2 = 	X 2 / 2 , where 	X is

he horizontal grid scale of a coarse-resolution model. These di-

gnostic results also indicate κ > 0, in agreement with the anal-

sis of Section 2.3 showing that positive κ is required for the

arametrized forcing to behave as an enstrophy sink and to mimic

he upgradient momentum flux resulting from a banana-shaped

ddy. 

. Discussion 

.1. Eddy geometry 

Here we compare our proposed parametrization to the eddy ge-

metry framework for describing the eddy stress that is explored
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Fig. 6. (a) For a coarse-graining of n = 4 (30 km coarse-grain gridbox scale), horizontal map of temporal correlation coefficient at the z = −415 m level between the eddy 

source function for vorticity, S ζ ( Eq. (47 )), and the vorticity tendency ∇ ⊥ · ( ∇ · T ) ( Eq. (21) ) for the case T = S W − W S ( Eq. (15) , or equivalently, Eq. (23) divided by 2 κ). 

The correlation is computed for the z = −415 m level, using days 3500–7210 ( ≈10 years of data) sampled at 10-day intervals. (b) As in (a), but showing the corresponding 

regression coefficient, in units of km 

2 (contour interval: 200 km 

2 ). Since T (κ) ≡ 2 κ( S W − W S ) , the regression coefficient is an estimate of the value of 2 κ . 

Fig. 7. Dependence of regression coefficient ( z = −415 m level) on coarse-grained gridbox size. (a) For coarse-grainings ranging from n = 2 to 12 times the 7.5 km resolution 

of the high-resolution model (i.e. from 15 to 90 km), the regression coefficient (which is shown in Fig. 6 b for the case n = 4 ) is averaged over the horizontal domain, 

excluding the region within 100 km of the boundaries (so as to avoid possible edge artefacts). The domain-averaged regression coefficient is then plotted against the area of 

the coarse-grained gridbox (black line and dots). The grey box-whiskers indicate the range of regression coefficients found over the horizontal domain. The box shows the 

lower and upper quartiles and the median (i.e. 25th, 50th and 75th percentiles of the data) and the whiskers show the 5th and 95th percentiles. (b) As in (a), but with the 

regression coefficients scaled by the area of the coarse-grained gridbox. 
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in a number of studies (e.g. Hoskins et al., 1983; Marshall et al.,

2012; Waterman and Hoskins, 2013; Waterman and Lilly, 2015 ).

The mean-flow forcing due to eddies is given by the Reynolds

stress tensor 

 = 

[
u 

′ u 

′ u 

′ v ′ 
u 

′ v ′ v ′ v ′ 

]
(50)

where the bar denotes the averaging over eddy phase that is used

to define the mean flow. Previous studies ( Hoskins et al., 1983;

Waterman and Lilly, 2015 ) have indicated that C can be separated

into isotropic and anisotropic parts such that 

 = KI + 

[
M N 

N −M 

]
= KI + L 

[
cos 2 θ sin 2 θ
sin 2 θ − cos 2 θ

]
(51)

where K = 

1 
2 ( u 

′ u ′ + v ′ v ′ ) is the eddy kinetic energy, M = 

1 
2 ( u 

′ u ′ −
v ′ v ′ ) is the excess eddy kinetic energy in the x direction over the

y direction, and N = u ′ v ′ is the covariance between fluctuations in

the two directions. The second expression rewrites the anisotropic
art of the tensor in terms of a magnitude L = 

√ 

M 

2 + N 

2 and di-

ection θ = 

1 
2 tan 

−1 (N/M) . The notation corresponds to Waterman

nd Lilly (2015) , with L referred as the ellipse anisotropy, and θ
he orientation of the principal axes of C , which are the coordi-

ate axes in which the off-diagonal components of C are zero (i.e.

 rotated frame in which N = 0 ). 

The decomposition in terms of anisotropy and orientation pa-

ameters L and θ is valid for any tensor of the above form, which

rom Section 2.1 can be written generally as a I + bR + + cR ×. There-

ore we can write 

 I + bR + + cR × = a I + 

√ 

b 2 + c 2 

[
cos 2 φ sin 2 φ
sin 2 φ − cos 2 φ

]
(52)

here φ = 

1 
2 tan 

−1 (c/b) . For the Reynolds stress tensor we have

 = K, b = M, c = N. From Eq. (23) , T (κ) = κζD R + − κζ ˜ D R × has a =
 , b = κζD, c = −κζ ˜ D . 

The similarity between the expressions for C and T ( κ) can be

ade more explicit by expressing the stretching and shearing de-
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o  
ormations in terms of the total deformation, δ ≡
√ 

˜ D 

2 + D 

2 , as ˜ D =
cos 2 γ , D = δ sin 2 γ , where γ = 

1 
2 tan 

−1 (D/ ̃  D ) is the angle be-

ween the axis of dilation and the x -axis (as defined in Section 2.1 ).

rom Eq. (23) we can then express T ( κ) as 

 

(κ) = κζδ( sin 2 γ R + − cos 2 γ R ×) = κζδ

[
sin 2 γ − cos 2 γ

− cos 2 γ − sin 2 γ

]
. 

(53) 

sing the fact that sin (φ + 

π
2 ) = cos φ and cos (φ + 

π
2 ) = − sin φ

or any angle φ, Eq. (53) would be equivalent 9 to the anisotropic

art of Eq. (51) if L = κ| ζ | δ and θ = γ ± π
4 , with the positive sign

orresponding to ζ > 0 and negative sign to ζ < 0. 

Vorticity evolution due to any stress tensor is governed by its

nisotropic part (see Eq. (21) ). Hence for the Reynolds stress ten-

or it is the polarization of the eddy kinetic energy, as represented

y the ellipse anisotropy L , that is important rather than the to-

al eddy kinetic energy, K ( Waterman and Lilly, 2015 ) 10 . For T ( κ) ,

hich has no isotropic part, κ | ζ | δ plays the role of L . A possi-

le physical interpretation is that, given the presence of large-scale

ow deformation δ, the “missing” amount of polarized eddy ki-

etic energy is proportional to | ζ | δ, representing the effects of the

longation of vorticity patches by the anisotropic flow. 

Using Eqs. (20) and (51) , the vorticity flux corresponding to the

eynolds stress tensor is 

 ⊥ · C = 

[
−K y + (L sin 2 θ ) x − (L cos 2 θ ) y 
K x − (L cos 2 θ ) x − (L sin 2 θ ) y 

]
. (54) 

ince the vorticity forcing is −∇ · (∇ ⊥ · C) , only terms involving

 and θ contribute to the vorticity budget. Expanding the deriva-

ives in Eq. (54) , with ( sin 2 θ ) x = 2 θx cos 2 θ etc, and omitting the

ivergence-free contribution from K , the vorticity flux can then be

ritten as 

 ⊥ · C = 

[
L x sin 2 θ − L y cos 2 θ

−L x cos 2 θ − L y sin 2 θ

]
+ 

[
L ( sin 2 θ ) x − L ( cos 2 θ ) y 

−L ( cos 2 θ ) x − L ( sin 2 θ ) y 

]

= 

[
sin 2 θ − cos 2 θ

− cos 2 θ − sin 2 θ

]
∇L + 2 L 

[
cos 2 θ sin 2 θ
sin 2 θ − cos 2 θ

]
∇θ . 

(55) 

he two vectors comprising Eq. (55) express the vorticity flux as

he sum of two vectors depending on the spatial gradients of L and

, respectively, and reproduce Eqs. (12) and (13) of Waterman and

illy (2015) . The vorticity flux corresponding to T ( κ) , F (κ) ≡ −∇ ⊥ ·
 

(κ) , is 

 

(κ) = 

[
cos 2 γ sin 2 γ
sin 2 γ − cos 2 γ

]
∇(κζ δ) 

+2 κζδ

[
− sin 2 γ cos 2 γ
cos 2 γ sin 2 γ

]
∇γ . (56) 

ssuming no spatial variation in κ , the gradient in the first term

s just ∇( ζ δ) and the whole expression is then proportional to a

ingle constant κ . Analogously to Eq. (55) and the interpretation

uggested above, Eq. (56) can be described as the vorticity flux as-

ociated with spatial gradients in both (1) the amount of polarized

ddy kinetic energy, hypothesized to be proportional to ζ δ, and (2)

he polarization direction, related to the orientation of the axis of
ilation. 

9 It is the anisotropic part of −C to which T ( κ) is equated. This is because the 

omentum tendency due to C as defined by Eq. (50) , which is a conventional way 

o define the Reynolds stress tensor, is −∇ · C, but we have defined the sign of our 

arametrized stress tensor so that its momentum tendency is ∇ · T ( κ) . 
10 In the principal axes frame of C , for which the off-diagonal component of C is 

ero, we have L = 

√ 

M 

2 = 

1 
2 
( u ′ u ′ − v ′ v ′ ) . Since L represents the difference between 

he eddy kinetic energies in the two orthogonal directions of the principal axes 

rame, we refer to it as the polarization of the eddy kinetic energy. 

w  

t  

s  

t  

s  

i  

t  

m  

b

.2. Nonlinear gradients 

Here we describe another way in which C and T ( κ) are related.

hen coarse graining the flow in the high-resolution model, the

ddies are defined as the deviation from the coarse-grained aver-

ge. We may then approximate the eddying flow using a Taylor

eries expansion, 

 

′ = xu x + yu y , v ′ = x v x + y v y (57) 

here u x , etc, are the spatial gradients of the coarse-grained flow.

he Reynolds stress tensor may then be written, before averaging,

s 

u 

′ u 

′ u 

′ v ′ 
u 

′ v ′ v ′ v ′ 

]
= 

[
(xu x + yu y ) 2 (xu x + yu y )(x v x + y v y ) 

(xu x + yu y )(x v x + y v y ) (x v x + y v y ) 2 

]

= x 2 
[

u 

2 
x u x v x 

u x v x v 2 x 

]
+ y 2 

[
u 

2 
y u y v y 

u y v y v 2 y 

]

+ xy 

[
2 u x u y u x v y + u y v x 

u x v y + u y v x 2 v x v y 

]
. (58) 

aking the mean over a square coarse-graining box of grid cells,

 

2 = y 2 = l 2 where l is a length scale characterizing the size of the

oarse-graining box, and xy = 0 . Then 

u 

′ u 

′ u 

′ v ′ 
u 

′ v ′ v ′ v ′ 

]
= l 2 

[
u 

2 
x + u 

2 
y u x v x + u y v y 

u x v x + u y v y v 2 x + v 2 y 

]

= l 2 ∇ u ∇ u 

T 

= l 2 ( S + W )( S − W ) 

= l 2 ( S 2 − W 

2 ) − l 2 ( S W − W S ) . (59) 

rom Section 2.1 , S 2 − W 

2 = 

1 
4 (δ

2 − σ 2 + ζ 2 ) I + σ S , which yields

o contribution to the vorticity tendency from the I -term, and for

ncompressible flow ( σ = 0 ) no contribution from the S -term. The

ontribution of Eq. (59) to the vorticity budget should then vary as

 W − W S , which is the same deformation tensor on which T ( κ) de-

ends ( Eq. (23) ). Furthermore, Eq. (59) indicates that the value of

should scale with the area of the coarse-graining box, l 2 , which

s consistent with the behaviour described in Section 3.3 ( Fig. 7 ) if

 ≈ n 	x . 

Hence the tensor S W − W S should approximate the diagnosed

ehaviour of the Reynolds stress tensor, which can be tested by

irectly comparing tensor components calculated from the coarse-

rained flow. Fig. 8 shows the temporal correlation coefficient be-

ween the off-diagonal tensor component of the Reynolds stress

ensor (i.e. N = u ′ v ′ in Eq. (51 )) and of the tensor S W − W S (i.e. c =
1 
2 ζ

˜ D in Eq. (15) ). For both of the coarse grainings shown ( n = 4

n Fig. 8 a and n = 8 in Fig. 8 b) there is overall a strong correlation

etween the tensor components, and as expected from Eq. (59) the

orrelation is negative. A similar strong correlation is obtained for

he tensor on-diagonal components (i.e. M = 

1 
2 u 

′ u ′ − 1 
2 v ′ v ′ in Eq.

51) correlated against b = 

1 
2 ζD in Eq. (15) ; not shown). The over-

ll strength of the correlation degrades with increasing coarse-

rain gridbox size, as expected due to the Taylor series becoming

 poorer approximation as n increases. 

Somewhat weaker correlations than those seen in Fig. 8 were

btained in the direct comparison of the vorticity forcing ( Fig. 6 a),

hich is subject to numerical degradation since two orders of spa-

ial differentiation are required to compute vorticity forcing from a

tress tensor (see Eqs. (21) and ( 25 )). Fig. 8 gives further support

o the use of T ( κ) as an approximation to the part of the Reynolds

tress tensor that affects the vorticity budget (i.e. the second term

n Eq. (59) ). Since only a single order of differentiation is required

o calculate the forcing in models that prognostically evolve mo-

entum (see Eqs. (17) and ( 24 )), less numerical degradation would

e expected in such models. 
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Fig. 8. Horizontal map of temporal correlation coefficient between stress tensor off-diagonal components determined from the Reynolds stress tensor (i.e. N = u ′ v ′ in Eq. 

(51) ) and the tensor T = S W − W S (i.e. c = − 1 
2 
ζ ˜ D in Eq. (15) ), for coarse grainings of (a) n = 4 and (b) n = 8 , which correspond to coarse-grain gridbox scales of 30 and 

60 km, respectively. The correlation is computed using days 3500–7210 ( ≈10 years of data) sampled at 10-day intervals, at the z = −415 m level. The contour interval is 

0.025, four times finer than that used in Fig. 6 . 
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Since the Taylor series as defined by Eq. (57) approximates the

spatial structure of the eddies by definition, a possible interpreta-

tion of Eq. (59) is that favourable correlations between the forcing

by T ( κ) and the actual eddy forcing are due to T ( κ) being equivalent

to the part of the approximated Reynolds stress tensor relevant

to the vorticity budget. Any potential parametrization for use in

eddy-permitting models will somehow mimic the structure of the

eddies, i.e. the spatial structure of the advective term in the fluid

equations, since it is the behaviour of the advective term that the

parametrization is trying to approximate. It is therefore encourag-

ing that the parametrization is consistent with the approximated

spatial structure of the flow as represented by a Taylor series ex-

pansion, but it can also be viewed as a filtered version that isolates

the vorticity budget contribution of the Reynolds stress tensor. The

use of a Taylor series has some precedent in the turbulence lit-

erature, where it is referred to as the nonlinear gradient model

( Meneveau and Katz, 20 0 0; Nadiga, 20 08; Nadiga and Bouchet,

2011 ). Its use has been characterized as assuming a “self-similarity”

of the eddies, whereby the spatial structure of the large-scale (i.e.

coarse-grained) flow can be used to predict the spatial structure

of the smaller-scale, unresolved flow. However, Sections 2.3 and

2.4 indicated that T ( κ) has distinct properties, which are not evi-

dent from expressing the coarse-grained Reynolds stress tensor as

a simple Taylor series. These include energy conservation, enstro-

phy dissipation, and behaving qualitatively as an anisotropic vis-

cosity that allows both strengthening and weakening of vorticity

gradients. These properties suggest that T ( κ) can contribute to the

upgradient fluxes required to sharpen and maintain realistic jet

structures. 

5. Conclusions 

A parametrization of the horizontal Reynolds stresses due to

mesoscale eddies for use in eddy-permitting ocean models has

been proposed. It is applicable to eddy-permitting models because

it depends on the flow deformation and therefore requires that

some eddy activity be resolved by the model. Numerical simula-

tions with an idealized eddy-resolving primitive equations model

indicate that the parametrization can partially mimic the coarse-

grained eddy vorticity forcing. Since the parametrization is ex-
ressed in terms of a stress tensor, it is equally applicable to mod-

ls that prognostically evolve momentum or vorticity (see Eqs.

24) or ( 25 ), respectively, for the explicit expressions giving the

arametrized tendencies). 

The parametrization has been developed within a two-

imensional framework, by considering momentum fluxes and ne-

lecting vertical motion and buoyancy effects that are important in

he real ocean. Since the gridscale of eddy-permitting ocean mod-

ls is near the deformation radius, the buoyancy term should not

e large and a barotropic approach is reasonable; nevertheless, fu-

ure work could explore possible 3D effects. Diagnostic analysis us-

ng more realistic ocean states may also be useful. 

Key properties of the parametrization include small-scale en-

trophy dissipation, conservation of energy (hence no exacerba-

ion of spurious small-scale energy dissipation), and the possibil-

ty of upgradient momentum fluxes. Moreover, our model diag-

ostics indicate that the constant coefficient κ can be specified as

aving no spatial or temporal variation itself, and scales with the

odel resolution. To verify whether these benefits can be realized

n practice, without other issues arising such as undesirable phys-

cal properties or numerical instability, requires implementation of

he parametrization, which is being addressed in a separate study

Bachman et al., in preparation). Implementation is not expected

o incur significant additional computational overhead in a model

ince no higher spatial derivatives than those used in conventional

ddy viscosity are required. 
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